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ABSTRACT:Reaction of calciumor ytterbium amalgamwith
[CpFe(CO)2]2 (Fp2) gave the isostructural heavy alkaline
earth or divalent rare earth compounds [MFp2(THF)3]2 (M=
Ca or Yb) containing two direct Ca�Fe (3.0185(6) Å) or
Yb�Fe (2.9892(4) Å) bonds. Density functional theory
supports experiment in finding shorter Yb�Fe than Ca�Fe
distances, and Ziegler�Rauk, molecular orbital, and atoms-in-
molecules analyses find the M�Fe bonding to be predomi-
nantly electrostatic in nature. The Yb�Fe interaction energy
and bond critical point electron density are slightly larger
than for Ca�Fe, in agreement with the shorter M�Fe bond
in the former. The corresponding reaction for magnesium
gave MgFp2(THF)4 with two O-bound Fp moieties and no
Mg�Fe bond.

Metal�metal bonded molecular compounds have been an
essential part of the development of inorganic chemistry

for decades.1 Very recently, this area has been re-energized by the
discovery of the first chromium�chromium quintuple bond,2 the
first zinc�zinc3 and magnesium�magnesium single bonds,4 and
a growing number of 4f element� and 5f element�main group5,6

and transition metal7,8 bond partners.9 Within this rich and topical
area, there nonetheless remains very little experimental or theore-
tical information regarding bonds between alkaline earth (Ae)
elements and transition metals. In the past ca. 40 years there have
been only three reports of structurally authenticated magnesium�
transition metal bonds,10 and the first (and only) beryllium�transi-
tion metal bond was found only 2 years ago.11 While weak and long
bonds between calcium and main group metals (Ga,12 Sn13) have
been reported, nothing is yet known about the structure or bonding
of calcium with a transition metal. At the same time, interest in the
heavier Ae metals is rapidly developing,14 and the chemistry of the
Ae elements has been compared to that of the lanthanides [e.g., Ca
and Yb(II); Sr and Sm(II)].15 Several examples are now known
which contain lanthanide�transition metal bonds,7 but the ques-
tions of whether analogous heavier alkaline earth�transition metal
bonds can be prepared at all, and how they compare to rare
earth�transition metal bonds, remain unanswered. Here we report
synthetic, structural, and theoretical studies of the first Ca�Fe
bonded compound and its isostructural Yb�Fe bonded analogue.

Marks has shown that the salt elimination reaction of
Cp3AnCl (An = Th, U) with Na[CpFe(CO)2] (NaFp) affords

Cp3AnFp containing An�Fe bonds.8b Likewise, Arnold recently
reported that reaction of KFp with [Nd(LNHC)I{N(SiMe3)2}]2
(LNHC = tBuNCH2CH2{C(NCSiMe3CHN

tBu}) gave Nd-
(LNHC)(Fp){N(SiMe3)2}, the first isolable 4f�3d bonded
complex.7d Our initial attempts to prepare a compound with a
transitionmetal�calciumbond took this synthetic approach (eq 1).

Reaction of KFp with [Ca(LDipp)I(THF)]2 (L
Dipp = HC{C-

(Me)N(2,6-C6H3
iPr2)}2) in THF afforded a product (1) of

composition “Ca(LDipp)(Fp)(THF)2” according to NMR spec-
troscopy and elemental analysis. The solid-state IR spectrum of
1 showed two strong bands at 1823 and 1780 cm�1, attributed
to the symmetric and antisymmetric ν(CO) bands of a coordi-
nated Fp ligand.16,17 However, X-ray crystallography (Figure 1)
showed that 1 is dimeric in the solid state, with two Fp anions
bridging pairs of six-coordinate, formally cationic calcium centers
through Fe�CO 3 3 3Ca isocarbonyl interactions.

Figure 1. Displacement ellipsoid plot (20% probability) of [Ca-
(L Dipp)Fp(THF)2]2 (1). H atoms omitted. Atoms carrying the suffix
“A” are related to their counterparts by the operator �x, 1� y, �z.
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The absence of a Ca�Fe bond in 1 contrasts with theMg�Mg
bonded compounds [Mg(LDipp)(L)]2 (L = THF or none) and
their homologues reported by Jones for the same diketiminate
supporting ligand.4 Since the number of heteroleptic starting
compounds of the type Ca(L)X (X = halogen) is extremely limited
for calcium (because of the Schlenk-type equilibria that accompany
its chemistry),14 we turned to an alternative synthetic approach.

Recalling Westerhausen’s synthesis of Ca(SnMe3)2(THF)4
from Sn2Me6 and calcium metal,13 and Jones’s preparation of
Ca{Ga(NArCR)2}2(THF)4 (Ar = 2,6-C6H3

iPr2, R = H or Me)
from Ga{(NArCR)2}I2 and calcium amalgam,12a we carried out
the corresponding reaction of Fp2 with Ca/Hg in THF
(Scheme 1). After 16 h at room temperature, [CaFp2(THF)3]2
(2_Ca) was isolated as large, red diffraction-quality crystals
following recrystallization from THF. The molecular structure
of 2_Ca is shown in Figure 2, and selected distances and angles are
given in Table 1. Attempts to form 2_Ca by reaction of KFp with
CaI2 (2:1) in THF-d8 gave mixtures of unknown Fp-containing
species. In contrast, Kempe et al. have recently shown that the
related Yb�Ru bonded compound [Yb{CpRu(CO)2}2(THF)2]n
could be formed from Na[CpRu(CO)2] and YbI2(THF)4.

18

Compound 2_Ca contains two symmetry-related CaFp2-
(THF)3 moieties joined by Fe�CO 3 3 3Ca isocarbonyl linkages.
Each octahedral calcium center is bonded to three THF mole-
cules, one O�bound Fp (Fe(2)), and one further Fp moiety
(Fe(1)) through an unprecedented, unsupported Ca�Fe bond
(Ca(1)�Fe(1) = 3.0185(6) Å). The structure of 2_Ca and other
data are discussed further below.

To gain additional experimental insight into the bonding
situation in 2_Ca and factors influencing its formation, we carried
out the corresponding reactions of Fp2 with ytterbium or
magnesium amalgams (Scheme 1). Reaction of Fp2 with Yb/
Hg followed by recrystallization from THF gave red diffraction-
quality crystals of [YbFp2(THF)3]2 (2_Yb). Crystals of 2_Yb are
isomorphic with those of 2_Ca, and the coordination geometries
of the metal centers in 2_Ca and 2_Yb are identical. The
Yb(1)�Fe(1) bond distance in 2_Yb is 2.9892(4) Å. Other

selected metric data are listed in Table 1, and a view of the
molecular structure is given in the SI. Compound 2_Yb is
somewhat different from Kempe’s related polymeric [Yb{CpRu-
(CO)2}2(THF)2]n, which possesses two Yb�Ru bonds per
lanthanide metal center.18

In contrast, the analogous reaction of Fp2 with Mg/Hg
followed by recrystallization from THF gave yellow diffraction-
quality crystals ofmonomericMgFp2(THF)4 (3_Mg, Scheme 1).
Unlike 2_Ca and 2_Yb, compound 3_Mg contains a six-coordi-
nate Mg center ligated by two O-bound Fp moieties and four
THF ligands; there is no Fe�Mg bond in 3_Mg. Further details
of the structure are given in the SI. Transition metal�alkaline
earth isocarbonyl-bridged compounds have been structurally
authenticated previously.19

The Ca�OTHF and Ca�OFp distances in 2_Ca are within the
expected ranges, as are those for the Fp moieties.19b The main

Scheme 1. Reactions of Metal Amalgams with
[CpFe(CO)2]2

Figure 2. Displacement ellipsoid plot (25% probability) of [CaFp2-
(THF)3]2 (2_Ca). H atoms and THF of crystallization omitted. Atoms
carrying the suffix “A” are related to their counterparts by the opera-
tor �x, 1� y, 1� z. [YbFp2(THF)3]2 (2_Yb) follows an identical
numbering scheme (see the SI).

Table 1. Selected Bond Distances (Å) and Angles (�) for
[MFp2(THF)3]2 [M = Ca (2_Ca) or Yb (2_Yb)]

2_Ca 2_Yb

M�Fe 3.0185(6) 2.9892(4)

M�OFp [Fe1(A)] 2.3597(18) 2.4069(19)

M�OFp [Fe(2)] 2.3100(19) 2.356(2)

M�OTHF [trans to M�Fe] 2.3968(18) 2.451(2)

M�OTHF [cis to M�Fe] 2.3527(19) 2.408(2)

2.3397(19) 2.396(2)

Fe(1)�CO (bridging) 1.705(2) 1.699(3)

Fe(1)�CO (terminal) 1.732(3) 1.735(3)

Fe(2)�CO (bridging) 1.689(3) 1.689(3)

Fe(2)�CO (terminal) 1.724(3) 1.718(4)

OC�Fe(1)�CO 92.07(13) 91.66(14)

OC�Fe(2)�CO 88.43(13) 88.07(15)
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features of interest are the Ca�Fe bonds, the symmetry-equiva-
lent distances of which (3.0185(6) Å) are somewhat shorter than
the sum of the respective covalent radii (3.08 Å).20 This contrasts
to the calcium�main groupmetal bonded complexesCa(SnMe3)2-
(THF)4 (Ca�Sn = 3.2721(3) Å; rcov(Ca) + rcov(Sn) = 3.15 Å)13

and Ca{Ga(NArCH)2}2(THF)4 and Cp*2Ca(Cp*Ga) (Ca�Ga =
3.1587(6) and 3.183(2) Å; rcov(Ca) + rcov(Ga) = 2.98 Å),

12 where
the metal�metal bonds were longer than expected on this basis.

The isomorphic structures of 2_Ca and 2_Yb allow the first
experimental comparison of any alkaline earth�transition metal
bond with that of a divalent rare earth analogue (Table 1). The
Yb�O distances in 2_Yb are ca. 0.05 Å longer on average
than their counterparts in 2_Ca, which is consistent with the
larger covalent radius of Yb (rcov = 1.76(10) (Ca) and 1.87(8)
(Yb) Å).20 The distances and angles for the Fp moieties in 2_Yb
are identical within error to those in 2_Ca. However, the Yb�Fe
distance of 2.9892(4) Å is 0.0293(1) Å shorter than in 2_Ca,
despite the larger rcov of Yb. The Yb�Fe interaction in 2_Yb
therefore appears to be somewhat stronger than in 2_Ca. Both
complexes react immediately in THF-d8 withMeI to form FpMe,
consistent with them being Fp� anion sources.16

Gradient-corrected density functional theory was employed to
study 2_Ca and 2_Yb (full models without symmetry con-
straints), and selected results are collected in Table 2; further
details are given in the SI. Calculations were also carried out on
the hypothetical compound [MgFp2(THF)3]2 (2_Mg), having a
structure analogous to those of 2_Ca and 2_Yb. For 2_Ca and
2_Yb, the agreement between the experimental and computed
structures is very good. In particular, the calculated Yb�Fe
distances are ca. 0.021 Å shorter than those for Ca�Fe, con-
sistent with the solid-state structures.

The Ziegler�Rauk energy decomposition scheme21 has been
employed to probe the interaction between the two [MFp2-
(THF)3] fragments at the converged geometries of 2_M
(Table 2). These data indicate a significant interaction energy
between the two fragments (effectively a measure of the M�Fe
interaction), which is 8.4 kJ mol�1 larger per M�Fe bond in
2_Yb than in 2_Ca, in agreement with the slightly shorterM�Fe
distance in the former. Of particular interest are the relative
contributions of the pre-relaxation electrostatic term and the
post-relaxation orbital mixing term; it is unusual that the electro-
static term is the largest in the energy decomposition of

interactions between neutral fragments. This suggests that the
M�Fe bonds are predominantly ionic, and population analysis of
the valence molecular orbitals supports this conclusion in finding
no contributions from M larger than 1%. Table 2 shows that the
difference in the Mulliken charges of the M and Fe(1) atoms in
each [MFp2(THF)3] fragment is large, in keeping with the large
electrostatic terms in the energy decomposition. Table 2 also
reveals that the difference in the Mulliken charges of the M and
Fe(1) atoms in 2_M is large in each case, as expected for an ionic
interaction, and also that the charges of M and Fe(1) are
significantly different in 2_M than in the [MFp2(THF)3] frag-
ments. This indicates that, on relaxation to self-consistency, there
is a significant redistribution of charge within each fragment. This
accounts for the favorable orbital mixing contributions to the
M�Fe interaction energy, despite there being very little M
character in the valence molecular orbitals.22

Atoms-in-molecules (AIM) analysis23 supports the existence
of Ca�Fe and Yb�Fe bonds in finding M�Fe bond paths, and
selected data at the M�Fe bond critical points (BCPs) are given
in Table 2. The electron density F is slightly larger at the Yb�
Fe BCP than the Ca�Fe BCP, in agreement with the shorter
Yb�Fe bond and larger interaction energy. The small positive
values of both F and its Laplacian r2F reinforce the molecular
orbital and Ziegler�Rauk analyses in finding little covalency in
the bonding. Following the approach of Vlaisavljevich et al.24 and
Bianchi et al.,25 the value ofHmay be used to further classify the
M�Fe interactions. Vlaisavljevich et al. used AIM to study a
range of heterobimetallic lanthanide�M and actinide�M bonds
and foundH values at the BCPs to be similar in magnitude to the
present results, but very slightly positive. H values close to zero
indicate metallic bonding in the Bianchi approach, and we there-
fore place, as do Vlaisavljevich et al., themetal�metal interactions
into this category.

Table 2 indicates that the calculated Mg�Fe interaction
energy in hypothetical 2_Mg is larger than in either 2_Ca or
2_Yb, but yet, experimentally, monomeric MgFp2(THF)4 (3_Mg)
forms when crystallized from THF solution. To probe this further,
the reactions summarized in eq 2 were assessed computationally for
M = Mg, Ca, and Yb. Since the (favorable) entropic contribution
associated with the formation of 2_M may be considered to be
approximately constant for all three metals, we focus only on the
enthalpy of the processes. DFT finds that formation of 2_Mg from

Table 2. Selected Computational Results for 2_Ca, 2_Yb, and 2_Mga

2_Ca 2_Yb 2_Mg

r(M�Fe) (Å) 2.984, 2.978 2.965, 2.956 2.815, 2.815

M�Fe interaction energy (per M�Fe bond) �134.9 �143.3 �150.5

orbital mixing energy �91.1 �107.4 �117.9

electrostatic interaction energy �191.2 �249.5 �207.6

Pauli repulsion energy 147.4 213.5 175.0

charge M ([MFp2(THF)3] fragment) 1.51 1.32 1.20

charge Fe(1) ([MFp2(THF)3] fragment) 0.14 0.15 0.14

charge M 1.38 1.01 1.10

charge Fe(1) �0.05 �0.01 �0.05

F (electron density) 0.022 0.029 0.021

r2F (electron density Laplacian) 0.041 0.040 0.039

H (energy density) �0.002 �0.006 �0.003
aAll energies in kJ mol�1. Orbital mixing (and hence total interaction) energies corrected for basis set superposition error (2_Mg, 9.1; 2_Ca, 7.2; 2_Yb,
10.2). AIM data (atomic units) obtained at the bond critical point. Charges obtained from Mulliken analyses.
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3_Mg is disfavored by ΔrH = +48.9 kJ mol�1, in agreement with
experiment. However, formation of 2_Ca and 2_Yb has favorable
ΔrH values of �11.9 and �33.5 kJ mol�1, respectively, again in
agreement with experiment.

The results in Scheme 1 and eq 2 illustrate the delicate balance
between metal�solvent and metal�metal interactions in these
predominantly ionic systems. Furthermore, the modest computed
ΔrH values for 3_Ca or 3_Ybf 2_Ca or 2_Yb suggest that these
equilibriamight lie in favor of themonomeric 3_M in the presence of
an excess of THF. Consistent with this, comparison of the solid-state
(Nujol mull) and solution (THF) IR spectra of 2_Ca and 2_Yb
shows that different structures are formed in each case. The solid-
state IR spectra show four ν(CO) bands (two overlapping) for the
symmetry-inequivalent Fp groups of dimeric [MFp2(CO)3]2,
whereas in THF solution only two bands are observed, as in the
case of 3_Mg in both the solution and solid states.

In summary, we have reported the first example of a complex
containing a calcium�transition metal bond, along with a study
of its molecular and electronic structures. Through correspond-
ing studies of its ytterbium counterpart, we have also made the
first comparison of the bonding for an alkaline earth element and
a rare earth element with a transition metal. The nature of the
bonding is the same in each case (predominantly electrostatic),
but the Yb�Fe interaction is stronger than the Ca�Fe one.
Work toward other alkaline earth�transition metal complexes is
under way in our laboratories.
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